
CHAPTER-8

SOFTWARE TESTING AND COST ESTIMATION
 -Ela Thakur

Software testing is the process of exercising with the specific intent of finding
errors prior to delivery to the end user. Testing is part of a broader process of
software verification and validation. Testing results in higher quality software,
more satisfied user and lower maintenance cost, more accurate and reliable results.
Testing costs 1/3 to ½ of the total cost of software development process.

Fig: A model of the software testing process

8.1. SYSTEM TESTING:

System testing fully exercise the computer based system to verify the system
elements have been properly integrated and perform allocated functions. An
independent testing team is responsible for system testing. The tests are based on
system specification.

Test
Cases

Test
Results

Test
Data

Test
Reports

Design Test Cases Prepare Test Data Run program with
TestData

Compare Results to Test
Cases

There are two phases in system testing:

a) Integration testing: (IOE Q:Explain Integration testing 067 asadh)
In this type of testing the test team has access to the system code. The
system is tested as components are integrated.
The purpose of integration testing is to verify functional, performance, and
reliability requirements placed on major design items. These "design items",
i.e. assemblages (or groups of units), are exercised through their interfaces
using Black box testing, success and error cases being simulated via
appropriate parameter and data inputs. Simulated usage of shared data areas
and inter-process communication is tested and individual subsystems are
exercised through their input interface. Test cases are constructed to test that
all components within assemblages interact correctly, for example across
procedure calls or process activations, and this is done after testing
individual modules, i.e. unit testing. The overall idea is a "building block"
approach, in which verified assemblages are added to a verified base which
is then used to support the integration testing of further assemblages.
Some different types of integration testing are big bang, top-down, and
bottom-up.
Big Bang
In this approach, all or most of the developed modules are coupled together
to form a complete software system or major part of the system and then
used for integration testing. The Big Bang method is very effective for
saving time in the integration testing process. However, if the test cases and
their results are not recorded properly, the entire integration process will be
more complicated and may prevent the testing team from achieving the goal
of integration testing.
Top-down and Bottom-up
Bottom Up Testing is an approach to integrated testing where the lowest
level components are tested first, then used to facilitate the testing of higher
level components. The process is repeated until the component at the top of
the hierarchy is tested.
All the bottom or low-level modules, procedures or functions are integrated
and then tested. After the integration testing of lower level integrated
modules, the next level of modules will be formed and can be used for

http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
http://en.wikipedia.org/w/index.php?title=Big_Bang_(project_management)&action=edit&redlink=1
http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Subsystem
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Black_box_testing
http://en.wikipedia.org/wiki/Requirement

integration testing. This approach is helpful only when all or most of the
modules of the same development level are ready. This method also helps to
determine the levels of software developed and makes it easier to report
testing progress in the form of a percentage.
Top Down Testing is an approach to integrated testing where the top
integrated modules are tested and the branch of the module is tested step by
step until the end of the related module.
The main advantage of the Bottom-Up approach is that bugs are more
easily found. With Top-Down, it is easier to find a missing branch link

b) Release testing:
In this type of testing a separate testing team tests a complete version of the
system before it is released to users. System testing by the development
team should focus on discovering bugs in the system. The aim of release
testing is to check that the system meets the requirements of system
stakeholders. System testing by the development team should focus on
discovering bugs in the system. Release testing is usually a black-box
testing process where tests are derived from the system specification. The
system is treated as black-box whose behavior. Another name for this is
‘functional testing’, so called because the tester is only concerned with
functionality and not the implementation of the software.

8.2. COMPONENT TESTING:

Several individual units are integrated to create composite components.
Component testing should focus on testing component interfaces. It is a defect
testing process. The components may be:

 Individual function or methods within an object
 Object classes with several attributes and methods
 Composite components with defined interfaces used to access their

functionality

Tester: developer Individual testing team

Fig: Testing Phases

8.3. TEST CASE DESIGN:

Test case design involves designing the text cases (inputs and outputs) used to test
the system. The goal of test case design is to create a set of tests that are effective
in validation and defect testing.

 Design approaches:
 Requirement-based testing:

Used in validation testing technique where we consider each requirement
and tests for that requirement.

 Partition Testing:
It is a software testing technique that divides the input data of a software unit
into partitions of equivalent data from which test cases can be derived. This
technique tries to define test cases that uncover classes of errors, thereby
reducing the total number of test cases that must be developed.

 Structural Testing(White-Box Testing):
It is a method of testing software that tests internal structures or workings of
an application, as opposed to its functionality (i.e. black-box testing). In
white-box testing an internal perspective of the system, as well as
programming skills, are used to design test cases. The tester chooses inputs
to exercise paths through the code and determine the appropriate outputs.

Component

Testing

System

Testing

http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_testing

Tests
 Derives

Fig: Structural Testing

8.4. TEST AUTOMATION:

In software testing, test automation is the use of special software (separate from the
software being tested) to control the execution of tests and the comparison of
actual outcomes to predicted outcomes. Test automation can automate previous
repetitive but necessary testing in a formalized testing process already in place, or
add additional testing that would be difficult to perform manually. It reduces
testing costs by supporting the test process with range of software tools. System
such as ‘Junit’ supports the automatic execution of tests. There are two general
approaches to test automation:

 Code-driven testing. The public (usually) interfaces to classes, modules or
libraries are tested with a variety of input arguments to validate that the
results that are returned are correct.

 Graphical user interface testing. A testing framework generates user
interface events such as keystrokes and mouse clicks, and observes the
changes that result in the user interface, to validate that the observable
behavior of the program is correct.

8.5. METRICS FOR TESTING:

Test Data

Component Code Test Outputs

http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Public_interface
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_testing

Majority of metric for testing proposed focus on the process of testing ,not the
technical characteristics of the test themselves.

 Halstead metrics applied to testing:
Testing effort can be estimated using metrics derived from Halstead
measures.
PL=1/ [(n1/2)*(N2/n2)]
e=V/ PL
Where; PL is program level
e is Halstead effort
V is program volume
n1 is no. of distinct operations that appears in program
n2 is the no. of distinct operands that appears in a program
N2 is the total no. of operand occurrence
The percentage of overall testing effort to be allocated to a module ‘K’ can
be estimated as:
K=e(K)/ ∑e(i) where; e(K) is computed for module K

And; ∑e(i) is the sum of effort across all modules of the
system

8.6. SOFTWARE PRODUCTIVITY:

Software productivity is the ratio between the amount of software produced to the
labor and expense of producing it. There are two measures of software
productivity:

I. Function-related measures:
Productivity is expressed in terms of the amount of useful functionality
produced in some given time. Function point in a program is computed by
measuring program features:-

A. External inputs and outputs
B. User interactions
C. External interfaces
D. Files used by the system

II. Size:
 Line of code delivered

 Also measure no. of delivered object code instruction or no. of pages
of system documentation

 Useful for programming in FORTRAN, Assembly or COBOL
 More expressive the programming language, the lower apparent

productivity
Example: A system which might be coded in 5000 lines of assembly
code. The development time for the various phases in 28 weeks,
Then; productivity= (5000/28) *4

=714 lines/ month

8.7. ESTIMATION TECHNIQUES

There is no simple way to make an accurate estimate of the effort required to
develop a software system. Initial estimates are based on inadequate information in
a user requirement definition. People in the project may be unknown. Project cost
estimates may be self-fulfilling. The estimate defines the budget and the product is
adjusted to meet the budget.

Some estimation techniques are:

 Algorithm cost modeling
 Expert judgment
 Estimation by analogy
 Parkinson’s law
 Pricing to win

 4x

2x

1 2 3 4 5

 0.15x

 0.25x

1: Feasibility
2: Requirement Design
3: Code
4: Delivery

Fig: Estimation Uncertainty

8.8. ALGORITHM COST MODELLING

Cost is estimated as a mathematical function of product, project and process
attributes whose values are estimated by project manager.
Effort = A* size^B*M
Where; A is an organization-dependent constant

B reflects the disproportionate effort for large project
M is a multiplier reflecting product, process and people attributes

 COCOMO MODEL(CONSTRUCTIVE COST MODEDL):

This is an empirical model that was derived by collecting data from a large number
of software projects. This is a well-documented and non-proprietary estimation
model.

Formula for effort computation for system prototype:
PM= [NAP*(1 - %reuse/100)] / [PROD]
Where; PM is effort estimation in person-motion

NAP is the total no. of application points in the delivered system
%reuse is an estimation of the amount of reused code in the development
PROD is the application-point productivity

8.9. PROJECT DURATION AND STAFFING:

As well as effort estimation, managers must estimate the calendar time required in
completing a project and the staff required.

Calendar time estimation (COCOMO)
TDEV = 3*(PM) ^ [(0.33+0.2)*(B – 1.01)]
Where; PM is the effort computation

B is the exponent computed (B is 1 for the early prototyping mode)

Time required is independent of the number of people working in the project. Staff
required cannot be computed by dividing the development time by the required
schedule. The number of people working in a project varies depending on the
phase of the project.

 IOE QUESTIONS:

 What is regression testing?
 A test suite is developed incrementally as a program is developed. We can

always run regression tests to check the changes to the program have not
introduced new bugs.
The intent of regression testing is to ensure that a change has not introduced
new faults. One of the main reasons for regression testing is to determine
whether a change in one part of the software affects other parts of the software.

Common methods of regression testing include rerunning previously-completed
tests and checking whether program behavior has changed and whether
previously-fixed faults have re-emerged. Regression testing can be used to test
a system efficiently by systematically selecting the appropriate minimum set of
tests needed to adequately cover a particular change.

Regression testing can be used not only for testing the correctness of a program,
but often also for tracking the quality of its output. For instance, in the design of
a compiler, regression testing could track the code size, simulation time and
compilation time of the test suite cases.

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Correctness_(computer_science)

 What are the basic principles of software testing? List the characteristics of
testability of software. List out possible errors of black-box testing.

 The basic principles of software testing are:
1) Testing an application exhaustively is impossible

Example
Assume that we have been given an application which produces bank
statements that are sent to the customers. It is impossible for us to test each
and every notice that is being generated to each customer. Only way to
perform is to identify a suitable sample for it.

2) Testing is context based - Software testing is always based on the purpose
to which the software built will be used.

Example:
An application built to be used inside an aircraft, requires rigorous testing
and subject it to high quality standards. But an application built for storing
the addresses in a Personal computer need not be tested rigorous similar
to the previous application.

3) Testing a software is to find out the defects - not to prove that the software is
error free.

The main objective of testing a software is to find out as many defects as
possible. Testing is not done to prove that the software is error free.

Example
A software may not have any reported defects (all defects identified are
fixed) but still it may fail in the production environment.

4) Testing starts from requirements gathering, In other words early testing
reduces the amount of money, rework involved etc.
Testing must be started as early as the Testing life cycle begins. The earlier
we identify and fix defects, the greater the money is saved.

5) The number of Defects in an application seems to come from one or few
areas or modules of the application and not spread evenly.

Example:
The module was prepared by new programmer
The complexity of that particular module is very high etc..

6) Performing the similar kind of testing again and again does not identify
the defects.

Executing same set of test cases will not identify the defects present in the
software.

7) Absence of errors in an application does not mean that, the application is
free from defects.

The characteristics of testability of software are:
- Operability
- Observability
- Controllability
- Decomposability
- Simplicity
- Stability
- Understandability

Possible errors of Black-box testing are:

o Only a small number of possible inputs can be tested and many program
paths will be left untested

o Without clear specifications, which is the situation in many projects, test
cases will be difficult to design

o Tests can be redundant if the software designer/ developer has already run a
test case

 Testing is one of the very important core parts of software development and
implementation. Comment on this statement and explain various testing
techniques.

 Software testing is the process of exercising with the specific intent of finding
errors prior to delivery to the end user. Testing is part of a broader process of
software verification and validation. Testing results in higher quality software,
more satisfied user and lower maintenance cost, more accurate and reliable
results. Testing costs 1/3 to ½ of the total cost of software development process.
Hence testing is the very important core parts of software development and
implementation.
Various testing techniques are:

A. SYSTEM TESTING:

System testing fully exercise the computer based system to verify the system
elements have been properly integrated and perform allocated functions. An
independent testing team is responsible for system testing. The tests are based
on system specification.

There are two phases in system testing:

- Integration testing:
In this type of testing the test team has access to the system code. The
system is tested as components are integrated.
The purpose of integration testing is to verify functional, performance, and
reliability requirements placed on major design items. These "design items",
i.e. assemblages (or groups of units), are exercised through their interfaces
using Black box testing, success and error cases being simulated via
appropriate parameter and data inputs. Simulated usage of shared data areas
and inter-process communication is tested and individual subsystems are
exercised through their input interface. Test cases are constructed to test that
all components within assemblages interact correctly, for example across
procedure calls or process activations, and this is done after testing
individual modules, i.e. unit testing. The overall idea is a "building block"

http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Subsystem
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Black_box_testing
http://en.wikipedia.org/wiki/Requirement

approach, in which verified assemblages are added to a verified base which
is then used to support the integration testing of further assemblages.
Some different types of integration testing are big bang, top-down, and
bottom-up.
Big Bang
In this approach, all or most of the developed modules are coupled together
to form a complete software system or major part of the system and then
used for integration testing. The Big Bang method is very effective for
saving time in the integration testing process. However, if the test cases and
their results are not recorded properly, the entire integration process will be
more complicated and may prevent the testing team from achieving the goal
of integration testing.
Top-down and Bottom-up
Bottom Up Testing is an approach to integrated testing where the lowest
level components are tested first, then used to facilitate the testing of higher
level components. The process is repeated until the component at the top of
the hierarchy is tested.
All the bottom or low-level modules, procedures or functions are integrated
and then tested. After the integration testing of lower level integrated
modules, the next level of modules will be formed and can be used for
integration testing. This approach is helpful only when all or most of the
modules of the same development level are ready. This method also helps to
determine the levels of software developed and makes it easier to report
testing progress in the form of a percentage.
Top Down Testing is an approach to integrated testing where the top
integrated modules are tested and the branch of the module is tested step by
step until the end of the related module.
The main advantage of the Bottom-Up approach is that bugs are more
easily found. With Top-Down, it is easier to find a missing branch link

- Release testing:
In this type of testing a separate testing team tests a complete version of the
system before it is released to users. System testing by the development
team should focus on discovering bugs in the system. The aim of release
testing is to check that the system meets the requirements of system

http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
http://en.wikipedia.org/w/index.php?title=Big_Bang_(project_management)&action=edit&redlink=1

stakeholders. System testing by the development team should focus on
discovering bugs in the system. Release testing is usually a black-box
testing process where tests are derived from the system specification. The
system is treated as black-box whose behavior. Another name for this is
‘functional testing’, so called because the tester is only concerned with
functionality and not the implementation of the software.

B.COMPONENT TESTING:

Several individual units are integrated to create composite components.
Component testing should focus on testing component interfaces. It is a defect
testing process. The components may be:

 Individual function or methods within an object
 Object classes with several attributes and methods

 Composite components with defined interfaces used to access their functionality

Tester: developer Individual testing team

Fig: Testing Phases

 What problems may be encountered when top down integration is chosen?
 The problems encountered are:

- The solution provides limited coverage in the first phases.

- A minimal percentage of user accounts are managed in the first phases.

- You might have to develop custom adapters at an early stage.

- The support and overall business will not realize the benefit of the solution as
rapidly.

- The implementation cost is likely to be higher.

Component

Testing

System

Testing

 Why does software project fail after it has passed through acceptance testing?
 The reasons are:
- Poor user input
- Stakeholder conflicts
- Vague requirements
- Late failure warning signals
- Communication breakdowns
- Hidden costs of going “Lean And Mean”

- Consider a program for the determination of the nature of roots of a
quadratic equation. Its input is a triple of positive integers (say a, b, c) and
values may be from interval [0, 100]. The program output may have one
of the following words. [Not a quadratic equation; Real root, Imaginary
roots, Equal roots]. Design test cases to test this program.

