
Chapter 1

Software Process and Requirements

 [Prepared by Amir GC and shishir Rai]

1.1 Software crisis

Software crisis is the production of failed and challenged software as a result of

 Introduction of powerful computer hardware
 When larger and complex software were ordered
 Software built is over budget, late delivery unreliable, difficult to maintain

properly.

It became clear that individual approaches to program development did not scale
up to large and complex system. This term was purposed in 1968.

1.2 Software characteristics

 To gain an understanding of software, it is important to examine the
characteristics of software. Software is a logical rather than a system element.

Main characteristics of software are:

2 Software is developed and engineered; it is not manufactures in the classical
sense.

3 Software doesn’t wear out: i.e. it is maintainable with the introduction of new
hardware.

4 A software component should be designed and implemented so that it can be
reused in many different programs.

5 Software should have all required functionality and performance for user.

1.3 Software quality attributes

A. Runtime System Qualities
Runtime System Qualities can be measured as the system executes.
Functionality: the ability of the system to do the work for which it was
intended.
Performance: the response time, utilization, and throughput behavior of
the system. Not to be confused with human performance or system
delivery time.
Security: a measure of system’s ability to resist unauthorized attempts at
usage or behavior modification, while still providing service to legitimate
users.
Availability (Reliability quality attributes falls under this category): the
measure of time that the system is up and running correctly; the length of
time between failures and the length of time needed to resume operation
after a failure.
Usability: the ease of use and of training the end users of the system. Sub
qualities: learnability, efficiency, affect, helpfulness, control.
Interoperability: the ability of two or more systems to cooperate at
runtime

B. Non-Runtime System Qualities
Non-Runtime System Qualities cannot be measured as the system executes.
Modifiability: the ease with which a software system can accommodate
changes to its software
Portability: the ability of a system to run under different computing
environments. The environment types can be either hardware or software,
but is usually a combination of the two.
Reusability: the degree to which existing applications can be reused in new
applications.
Integrability: the ability to make the separately developed components of
the system work correctly together.

Testability: the ease with which software can be made to demonstrate its
faults

1.4 Software process models

Software process model is a simplified representation of a software process. Each
process model represent a process from a particular perspective, so only provide
only partial information about that process.

Main process model of software are:

1. The water fall model
2. Incremental development
3. Reuse-oriented software engineering
4. Spiral model

1.4.1 The water fall model

These takes the fundamental process activities of specification, development,
validation, development, ad evolution and represent them as separate process
phases such as requirements specification, software design, implementation,
testing, and so on.

Requirements definition

System and software
design

Implementation and unit
testing

Integration and system
testing

Operation and
maintenance

Fig 1.1 the water fall model

Because of the cascade from one phase to another is known as the water fall
model. We should plan and schedule all of the process activities before starting
works on them. Principle stages of the water fall model are listed below:-

i. Requirements analysis and definition:
 The system’s services constraints and goals are established by

consulting with the user.
 They are defined in detail and serve as a system specification.

ii. System and software design:
 This process gives the requirements to either hardware or software

systems by establishing an overall system architecture.
 Involves identifying and describing the fundamental software system

abstractions and their relationships.

iii. Implementing and unit testing:
 At this stage software design is realized as a set of programs or

program units.
 Unit testing involves verifying that each unit meets its specification.

iv. Integration and system testing:
 Individual program units or programs are integrated and tested as a

complete system to ensure that software requirements have been
made.

v. Operation and maintenance:
 Longest phase
 System is put into practical use.
 Maintenance involves correcting errors which were not discovered

earlier.

Advantages

 Reflect systematic way of software process

 Useful for larger system engineering project

Disadvantages

 Inflexible partitioning of the project into distinct stages.
 Difficult to respond to changing customs requirements.

1.4.2 Incremental development model

Concurrent activities

Fig 1.2 Incremental development

 Incremental development is based on the idea of developing an initial
implementation, exposing this to user comment and evolving through
several versions until and complete system has been developed.

 Interleaves the activity of specification, development & validation
 Developed as a series of version (increments) with each version adding

functionalities to the previous one.
Advantages

 The cost of accommodating changing customer requirements is
reduced.

 It is easier to get customer feedback on the development work that
has been done.

 More rapid delivery and development of useful software to the
customer is possible, even if all of the functionality has been
included.

Outline description

 Specification

Final version

Intermediate version

 Initial version

Validation

 Development

Disadvantages

 Hard to identify common facilities that are needed by all increments as
requirement are not defined in detail at early stage.

 Difficult when replacement system is being developed as increments do
not have full functionalities

 Conflicts arises with the pro current model of organization where complete
system specification is part of the system development

1.4.3 Reuse oriented software engineering model

Fig 1.3 Reuse-oriented software engineering

The principle stages are

I. Requirement specification:
 same as of water fall model

II. component analysis:
 A search is made for components to implement that requirement

specification.
 Usually there is no exact match
 Components which are discovered may only provide some of

functionalities required.
III. Requirement modification:

 The requirements are analyzed using the information about the
components that have been discovered.

 They are the modified to reflect the available components
IV. System design with reuse:

Requirements
specification

System validation
Development and

integration
System design with reuse

Requirement modificationComponent analysis

 Framework of the system is designed or existing frame work is
reused.

 Some new software are designed if reusable components are not
available.

V. Development and integration
 Software that cannot be externally procured is developed
 And the components and COTS (commercial-of-the-shelf) are

integrated to create the new system.
There are three types of software component that may be reused:

a. Web services that are developed according to services and which
are available for remote invocation

b. Collection of object that are developed as a package to be
integrated with a component frame work such as .NET or J2EE.

c. Stand-alone software system that are configured for use in a
particular environment.

Advantages

 Reduce the amount of software to be developed
 Reduces cost and risk.
 Fast delivery of the software.

 Disadvantages

 May lead to a system that does not meet the real necessary of
the user requirement.

 Some control over the system evolution is lost as new as new
versions of the reusable components are not under the control
of the organization using them.

1.4.4 Spiral model

Determine objectives, alternatives Evaluates alternatives, identify, Resolve risk

 &constraint Risk analysis

Risk analysis

 Risk analysis

 . Risk analysis Prototype 2 Prototype 3
Operational

 Prototype 1
prototype

Requirement plan life cycle concept of simulation, Models, benchmarks

Development operation S/W requirements

 Plan Requirement validation product design Detail design

Code

 Integration and test plan Design V&V Unit test

 Integration test

 Acceptance test

 Plan Next Phase Service Develop, verify

 Next level product

Fig 1.4 Spiral Model of Software process

In this model process is represented as spiral rather than a sequence of activities
with some backtracking from one activity to another. Main principal stage of
spiral model are as follow:

1. Objective setting:
 Specific object for that phase of the project are defined
 Constraints and product are identified and detail management plot is

drawn up.
 Project risks are identified.
 Strategies are planned to minimize risk

2. Risk assessment and reduction:
For each of identified risks, a detailed analysis is carried out and

step are taken to reduce them.
3. Development and validation

After a risk evaluation, a development model is chosen.
For eg . if user interface risk are dominant then prototyping

may be throw away
 If safety risk are main dominant then development based on

formal transformation is chosen
 If risk is about sub system integration ,then waterfall model is

best to use
4. Planning:

Project is reviewed and decision is made whether to continue if
it is decided then further plan for next phase are drawn up.

Advantages
 Explicit recognition of the risk.
 Flexibility to manage requirement and control changes
 Features for large business and complicated project
 Compromises both water fall model and prototype model

 Disadvantages

 Not suitable for smaller project
 Not suitable for changes that happen frequently

1.5 Process iteration

The Waterfall model has dominated software development for many years, but
iteration of processes is catching in. There are now a number of well-established
iterative development process models that can be classified according to the
levels where iteration is applied. Iteration can improve validation and verification
by allowing earlier quality feedback. Moreover, there seems to be a secret
marriage between teamwork and iteration. Altogether, from a SPI (software
process Iteration) point of view, changing to an iterative development process
model could very well raise your professional standards in software development.

 Parts of the process are repeated as system requirement evolve.
 System design & implementation work must be reworked to implement the

change requirement.
 It is alternative approach to S/w development.
 Makes the system that can do all to do little more.
 Minimize the risk of building wrong product .e.g. building a table instead of

chair.
 Several development process use iteration in high level or level or both.

Development process that support process iteration:
Incremental development process
Spiral development

o During iteration process turns of iteration should me marked strictly.
o Effective iteration means optimizing the number of turns which requires

the right stop criteria.
1.6 Process Activities
A software process is a set of related activities that leads to the production of a
software product. This may involves the development of software from a scratch
in a standard programming language like java or C. There are many different S/W
processes but all must include four activities they are:

a. Software specification
b. Software design and implementation
c. Software validation
d. Software evolution

A. software specification:
Software specification or requirements engineering process of the
understanding & defining what services are required from the system and
identifying the constraints on the system development.

feFeasibility study

Requirements
elicitation &analysis

Fig 1.5The requirement engineering process

The four main activities in engineering requirement process:

 Feasibility study:
o An estimate is made whether the user need may be satisfied using

current software and hardware technologies.
o The study also considers whether the purposed system is cost-effective

from business point of view.
o It should be quick and cheap.
o Should provide information to decide whether or not to go ahead with

more detail analysis.
 Requirement elicitation and analysis:

o Derivation of the system requirements by observing the existing
system, discussion with potential users & procurers, task analysis.

o Involve development of one or more system models & prototype.
o Helps us to understand the system to be specified.

 Requirement specification
o Activity of translating the information gathered during the analysis

activity into document that defines the set of requirement.
o Two types of requirement are: i) user requirement b) system

requirement

Requirement
validation

Requirement
specification

Feasibility report

System model
User and system

requirement
Requirement

documentation

 Requirement validation
o Checks the realism, consistency, completeness of requirements.
o Errors in the requirements are discovered & modified to correct

these problems.
B. Software design and implementation

 Design inputs

 Design activities

 Design outputs

Fig 1.6 software design process

Four main activities that may be part of design process are

 Architectural design
o Identification of the overall system.
o Identify the relationship between principal component

 Interface design
o Define the interfaces between system components.

System architecture Database
specification

Interface
specification

Architectural design Interface design Component design

Database design

Data descriptionRequirement specificationPlantation information

Component
specification

 Component design
o Here we take each system component and design how it will operate.
o It may be the list of changes to be made to a reusable component or

a detailed design model.
 Database design

o Design the system data structure and how they are to be
represented in a database.

C. System validation
Software validation & verification is intended to show that both that a
System meets both specification and expectation of system customer.
Figure below is of testing phase of plan-driven software process

 Validation may also involves checking process such as inspection and

review at each step of software process. Main process in software
testing and validation are as follow

 Development testing
o Component making up the system are tested by the people

developing the system.
o Each component is tested separately.

Requirement
specification

System
specification

System design Detailed design

Module and unit
code & test

Sub-system
integration test

System
integration test

Acceptance test

Acceptance test
plan

System integration
test plan

Sub-system integration
test plan

service

o Component may be simple entities such as function, object and
class.

 System testing
o System component are integrated to create a complete system.
o Concerned with finding error that happens due to components and

component interface problem.
 Acceptance testing

o Is the final stage in testing before the system is accepted for
operational use?

o The system is tested with data supplied by a customer.
o May reveal errors and requirements problems.

Alpha testing: some time acceptance testing is known as alpha testing.
Custom system is developed for single client. It continues until the client
and developer agreed that the system is acceptable.
Beta testing: involves delivering the system to multiple clients. They report
the problem to the developer. After this developer modify it and release
the system.

D. Software evolution
It is very expensive to make changes to hardware design but changes can
be made to software at any time during or after the development in
cheaper in correspondence to hardware change. Software engineering is a
evolutionary process where software is continually changed over its life
time with response to changing requirements and user needs.

Define system
requirement

Assess existing
system

Propose change
system Modify system

Existing system

New system

1.7Computer-aided software engineering(CASE)

 CASE tools are programs that are used to support software engineering
process. These tools therefore include design editors, data dictionaries,
compilers, debuggers, system building tools, etc.

 CASE tools provide process support by automating some process activities
and by providing information about the software that is being developed.

 Assist in development and maintenance of software
 Developed in 1970’s to speed up the s/w build up process
 Allows rapid development of software to cope with the increasing speed of

market demand.
Classification of CASE tools

a. Business system planning
 Information engineering tools
 Process modeling and management tools

b. Project management
 Project planning tools
 Risk analysis tools
 Project management tools
 Requirement tracing tools

c. Programming tools
 Integrating and testing tools
 Client /server tools

d. Maintenance tools
 Requirement engineering tools

Specific examples:
 with class-object oriented design & code generation
 oracle designer/200-integrated CASE environment

 1.8 Functional and non-functional requirements

Functional requirements
Functional requirements specify the product capabilities, or things that a product must do for
its users. The functional requirements specify what the product must do. They relate to the
actions that the product must carry out in order to satisfy the fundamental reasons for its
existence. Functional requirement must fully describe the actions that the intended product can
perform. They describe the relationship between the input and output of the system.

Non-functional requirements
Non-functional requirements define system properties such as reliability, performance,
security, response time and storage requirements and constraints like Input output device
capability, system representations.
Non-functional requirements are more critical than functional requirements. A system user can
usually find ways to work around a system function that doesn’t really meet their needs but if
the non-functional requirements are not met, then the system will be useless.
They describe various quality factors, or attributes, which affect the functionality's
effectiveness.
Functional Nonfunctional
Product features Product properties
Describe the work that is done Describe the character of the work
Describe the actions with which the work is
concerned

Describe the experience of the user while doing
the work

Characterized by verbs Characterized by adjectives

1.9 User requirements
User requirements are high level statements, in a natural language with diagrams, of what the
system should do and the constraints under which it must operate.
User requirements should describe functional and non-functional requirements in such a way
that they are understandable by system users who don’t have detailed technical knowledge.
User requirements are defined using natural language, tables and diagrams as these can be
understood by all users.

1.10 System requirements
They are more precise than user requirements.
They are more detailed descriptions of the software system’s functions services and operational
constraints.
The system requirements document should define exactly what is to be implemented.
They may be incorporated into the system contract between the system buyer and the
software developers so as to define how the system should work.

They may be defined or illustrated using system models.

1.11 Interface specification
Interface specification describes the behavior of some software unit such as function or class.
Interface specification is an important part of any design process which describes the interfaces
between the components in the design.
It is required so that objects and sub functions can be designed in parallel.
It is used to document the design of future software components and the correct usage of an
existing component.

1.12 The software requirements documents
The software requirements document sometimes called the software requirements
specification or SRS is an official statement of what the system developers should implement.
It should include both the user requirements for a system and a detailed specification of the
system requirements.
The requirements document states ‘what the software will do’. It does not state ‘how the
software will do it’.
The main purpose of a requirements document is to serve as an agreement between the
developers and customers on what the application will do.

The characteristics of a good software requirements document are
1. Complete:A complete requirements specification must precisely define all the real world
situations that will be encountered and the capability’s responses to them. It must not include
situations that will not be encountered or unnecessary capability features.
2. Consistent: System functions and performance level must be compatible and the
required quality features (reliability, safety, security, etc.) must not contradict the utility of the
system. For example, the only aircraft that is totally safe is one that cannot be started, contains
no fuel or other liquids, and is securely tied down.
3. Correct: The specification must define the desired capability’s real world operational
environment, its interface to that environment and its interaction with that environment.
4. Modifiable: Related concerns must be grouped together and unrelated concerns
must be separated. Requirements document must have a logical structure to be modifiable.
5. Ranked: Ranking specification statements according to stability and/or importance is
established in the requirements document’s organization and structure. The larger and more
complex the problem addressed by the requirements specification, the more difficult the task is
to design a document that aids rather than inhibits understanding.
6. Testable: A requirement specification must be stated in such a manner that one can test it
against pass/fail or quantitative assessment criteria, all derived from the specification itself
and/or referenced information. Requiring that a system must be “easy” to use is subjective and
therefore is not testable.
7. Traceable:Each requirement stated within the SRS document must be uniquely identified to
achieve traceability. Uniqueness is facilitated by the use of a consistent and logical scheme for
assigning identification to each specification statement within the requirements document.

8. Unambiguous: A statement of a requirement is unambiguous if it can only be interpreted
one way. This perhaps, is the most difficult attribute to achieve using natural language. The use
of weak phrases or poor sentence structure will open the specification statement to
misunderstandings.
9. Valid: To validate a requirements specification all the project participants, managers,
engineers and customer representatives, must be able to understand, analyze and accept or
approve it. This is the primary reason that most specifications are expressed in natural
language.
10. Verifiable: In order to be verifiable, requirement specifications at one level of
abstraction must be consistent with those at another level of abstraction. Most, if not all, of
these attributes are subjective and a conclusive assessment of the quality of a requirements
specification requires review and analysis by technical and operational experts in the domain
addressed by the requirements.

1.13 Feasibility study
A feasibility study is a short, focused study that is done earlier in requirement engineering
process and is carried out to select the best system that meets performance requirements.
The main aim of the feasibility study activity is to determine whether it would be financially and
technically feasible to develop the product.
The feasibility study activity involves the analysis of the problem and collection of all relevant
information relating to the product such as the different data items which would be input to
the system, the processing required to be carried out on these data, the output data required
to be produced by the system as well as various constraints on the behavior of the system.
It should be relatively cheap and quick.

1.14 Requirements elicitation and analysis
After an initial feasibility study, the next stage of the requirements engineering process is
requirements elicitation and analysis.
It is an iterative process that can be represented as a spiral of activities – requirements
discovery, classification and organization, negotiation with prioritization and requirements
specification.
In this process the software engineers work with the customers and system end users to find
out about the application domain, what services the system should provide, the required
performance of the system hardware constraints.

1. Requirements Discovery

2. Requirements Classification
and Organization

3. Requirements Specification

Fig. The requirements elicitation and analysis process

4. Requirements Prioritization
and Negotiation

1. Requirements discovery
This is the process of interacting with stakeholders of the system to discover their
requirements. A system stakeholder is anyone who should have some direct or indirect
influence on the system requirements.

2. Requirements classification and organization
The discovered unstructured collection of requirements are then classified and structured
properly. The most common way of grouping requirements is to use a model of the system
architecture to identify sub-systems and to associate requirements with each sub-system.

3. Requirements prioritization and negotiation
Inevitably, when multiple stakeholders are involved, requirements will conflict. So the
prioritization of the requirements is necessary. Stakeholders have to meet and negotiate to
resolve differences and agree on compromising requirements.

4. Requirements specification
Finally the requirements are documented and written in a requirements document.

Requirements elicitation is a difficult process for several reasons:
a. Stakeholders often don’t know what they want from a computer system in most general

terms, they may make unrealistic demands because they don’t know what is and isn’t
feasible.

b. Stakeholders in a system naturally express requirements in their own terms and with
implicit knowledge of their own work. Requirements engineers, without experience in
the customer’s domain may not understand these requirements.

c. Different stakeholders have different requirements and they may express these in
different ways. Requirements engineers have to discover all potential sources of
requirements and find the commonalities and conflict.

d. Political factors may influence the requirements of a system. Managers may demand
specific system requirements because these will allow them to increase their influence
in the organization.

e. The economic and business environment in which the analysis takes place is dynamic. It
inevitably changes during the analysis process. The importance of particular
requirements may change. New requirements may emerge from new stakeholders who
were not previously consulted.

1.15 Requirements validation and management
Requirements validation is the process of checking that requirements actually define the
system that the customer really wants.
It overlaps with analysis as it is concerned with finding problems with the requirements.
It is important because errors in a requirements document can lead to extensive rework costs
when these problems are discovered during development or after the system is in service.
The process of requirements validation includes different checks.

1. Validity and verifiability: Verification and validation is not the same thing.
Validation: Are we building the right product?

Verification: Are we building the product right?
Validation: The process of evaluating software during or at the end of the development process
to determine whether it satisfies specified requirements.
Verification: The process of evaluating software to determine whether the products of a given
development phase satisfy the conditions imposed at the start of that phase. For verifiable
software, we must be able to write a set of tests that can demonstrate that the delivered
system meets each specified requirement.
Validation ensures that the product actually meets the user's needs, and that the specifications
were correct in the first place, while verification is ensuring that the product has been built
according to the requirements and design specifications.
 Validation ensures that "you built the right thing". Verification ensures that "you built it right".

2. Consistency: Requirements in the document should not conflict. There should not be
contradictory constraints or different descriptions of same system function.

3. Completeness: The requirements document should include requirements that
define all functions and the constraints intended by the system user.

4. Realism: The requirements should be checked to ensure that they can actually be
implemented under constraints such as time and money.

The main problem with requirement validation is that the requirements change continuously
during requirements elicitation.
Requirements validation techniques:
Requirement reviews: The requirements are analyzed systematically by a team of
reviewers who check for errors and inconsistencies.
Prototyping: An executable model of the system in question is used to check the validity.
Test-case generation: Requirements should be testable. If a test for a requirement is difficult or
impossible to design, this usually means that the requirements will be difficult to implement
and should be reconsidered.

Requirement management is the process of managing changing requirements during the
requirement engineering process by documenting, analyzing, tracing, and agreeing on
requirements and then controlling change and communicating to relevant stakeholders.
It is the process of understanding and controlling changes to the system requirements.

Requirement management planning: Planning is important during requirements management.
a. Requirements identification: Each requirement should be uniquely identified.
b. A change management process: Process followed when analyzing a requirement change

and the impact and cost of changes.
c. Traceability policies: These policies define the relationships between each requirement

and between the requirements and the system design that should be recorded. The
traceability policy should also define how these records should be maintained.

d. Tool support: Requirements management involves the processing of large amounts of
information about the requirement. Tools that may be used range from specialist
requirements management systems to spreadsheets and simple database systems.

A good requirement engineering process consists of 4 main phases.

1. Feasibility study
2. Requirements elicitation and analysis
3. Requirements specification
4. Requirements validation

Past IOE question

 What is software crisis? Explain with the help of an example..
 Describe spiral model for software development. What are its advantages

and disadvantages?
 Explain requirement management process with necessary illustration.
 What are the advantages and disadvantages of the water fall process? List

out various model of the software development. Explain the limitation of
waterfall model in detail.

 Explain soft requirement specification (SRS).what are the good
characteristics of good SRS document?

